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Spopsis 
Literature data on the non-Newtonian flow of bulk polymer and of polymer solutions 

are correlated on the basis of a four-parameter equation, 7 = vm + (70 - qm)/[l  + 
( T D ) ~ ] ,  7 being the viscosity at shear rate D, and 7 0  and vm limiting values a t  D = 0 and 
D = m, respectively. The parameters 70, qm, and T all show dependence on molecular 
weight, and in general there is good correlation between T and q0. There is evidence that 
7 is related to a molecular weight higher than the weightraverage. The exponent rn 
shows dependence on molecular weight distribution and approaches an upper limit of 
unity for a monodisperse linear polymer. For linear unblended polymers it may be 
expressed empirically by rn = (i@n/i@w)'/6. 

Introduction 

It is widely recognized that polydispersity is an important factor in 
rheological behavior and can have a significant influence on the flow curve 
of a non-Newtonian fluid. The subject has recently been reviewed by 
Schurz,' who observes that in general polydispersity acts in such a way as 
to broaden the flow curves and render them more flat. Other workers have 
referred to the influence on the onset of non-Newtonian flow, while Dun- 
leavy and Middleman2 have recently observed that "it does seem clear 
that polydispersity is a variable not properly accounted for in any theo- 
retical or experimental work to date" (1966). 

In  previous work3 it has been shown that the flow curves for a wide 
range of pseudoplastic systems can be represented by an equation of the 
form 

7 = 7 -  + (70 - v m ) / ( 1  + aDm> 

= 7 m + (70 - 7 m > / [ l  + ( T D ) ~ ]  (1) 

where 7 is the viscosity a t  shear rate D, and q0 and 7 are limiting values 
a t  D = 0 and D = a, respectively. T is a constant such that a t  a shear 
rate 7- l  the viscosity of the system assumes the mean value (q0 + r )  m)/2. 

The notation here is slightly different from that originally used, the 
shear rate exponent being denoted by m in order to avoid possible confusion 
with the power law relation, where shear stress is proportional to the nth 
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power of the shear rate. According to eq. (1) a graph of log (9 - 9 -) 
against log D will be linear a t  high mtes of shear,$ with a slope -m. A 
very approximate relationship between the two exponcnts is thus indicatcd, 
in = 1 - n. 

Equation (1) was originally derived from u consideration of particle 
interactions in a disperse system, but in practice it was found that with a 
fixed value of for the exponent m it also gave a good representation of 
data for polymer solutions and  melt^,^-^ i.e., the equation has been widely 
used in the form 

9 = 9 m + (90 - 9 m ) / D  + (7W11 (2) 
However this exponent does not appear to be universally applicable, 

and in some cases higher values have been used.? Gillespies has found 
that for “monodisperse” polystyrenes eq. (2) does not give a satisfactory 
representation but a good description is given by the Williamson equation,g 

9 = 9* + C*/(CZ + 0) (3) 

where v* is the equilibrium viscosity due to hydrodynamic effects and 
C, and Cz are constants. 

Again, for broad distributions, Gillespie finds that eq. (3) is inadequate. 
He concludes that eqs. (2) and (3) are each of limited application and 
derives a more general flow equation involving a ratio (a) of maximum 
and minimum relaxation times. 

He finds that 10 > a > 1 gives curves which are practically identical to 
those of eq. (3), while a = 300 f 100 gives close agreement with eq. (2). 

Inspection of eqs. (2) and (3) suggests an alternative approach. The 
two equations are essentially of the same form and may be regarded as 
special cases of eq. (l), with m = Equation 
(1) may therefore be regarded as a general equation in which the exponent 
m is an adjustable parameter related to polydispersity. Reducing the 
exponent gives a broadening of the curves as indicated in Figure 1. 

Powelllo has in fact introduced empirical equations for polymer systems 
which are essentially similar to eq. (1) and with an exponent which is 
postulated to be a function of molecular weight distribution. For a bulk 
polymer, Powell’s equation takes the form 

and m = 1, respectively. 

rl = r l o / [ l  + (f5) 

where 7 is a representative relaxation time, F = (g , /~m)z ,  M ,  is the 
number-average molecular weight, Bw is the weight-average molecular 
weight,, and 2 is a constant related to molecular shape. For a monodisperse 
system F = 1. 

= 0. For a 
polymer solution Powell uses a different equation, but this again can be 
regarded as a special case of eq. (1) in which is identified with the solvent 
viscosity, vS (assumed to be independent of rate of shear). 

Equation (5) is effectively a special case of eq. (l), with 9 
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Fig. 1. Theoretical curves. 7 = 7, + (70 - q m ) / [ l  + ( T D ) ~ ] .  Effect of exponent 
m. 

If m is regarded as an adjustable parameter, eq. (1) provides a means 
of rheological characterization in terms of four (not necessarily indepen- 
dent) parameters, 90, 7 m, 7, and m. For a linear polymer it should be 
possible to relate these quantities to molecular weight, molecular weight 
distribution (polydispersity), and temperature. With this object in view 
an analysis has been undertaken of published rheological data on polymers 
of known molecular weight distribution. 

Evaluation of Flow Parameters 

For a known value of the exponent m, graphical methods for evaluating 
the parameters 7 0 , ~  of eq. (1) have been fully described el~ewhere.~ 
At sufficiently low rates of shear a plot of 1/11 against D" should be linear. 
Such a plot generally serves both to establish the value of m and to evaluate 
the constants qo and r .  The intercept is l /qo  and the slope a/qo, where 
a = 7". The correctness of the exponent m can subsequently be verified 
from a second graph of 9 against (90 - q)D-", which should be linear over 
a wider range. The intercept of this second graph is 9 ,. 

Polystyrene Melts 

Extensive rheological data has been published on polystyrene melts, 
particularly on polymers of narrow molecular weight distributionll -14 

and 
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prepared by anionic polymerization. Ruddll has published capillary 
rheometer data a t  500°K on six such polymers, with &fW/IZn in the rangc 
1.04-1.08. On applying eq. (l),  plots of 1/g against D were found to be 
linear at low rates of shear, as in Figure 2, indicating an exponent of unity. 
Figure 3 shows a second graph of g against (go - 7)D-l for polymer SlO5, 
which remains linear over the whole range, in confirmation of the value of 
m. The intercept of this graph is g m, and since this is finite i t  is evident 
that Powell's equation is not applicable. 

With an exponent of unity, literature data on anionic  polymer^^^-^* were 
correlated on the basis of eq. (1). The molecular weight dependence of 
go and g follows the general pattern of behavior observed in polymer 
systems by Porter and Johnson15 and by Hoffmann and Rother,I6 i.e., g 

increases with molecular weight but much less abruptly than the 3.4 power 
dependence shown by go. The parameter r also increases with molecular 
weight but the ratio go/r shows little dependence on either molecular 
weight or temperature. It is interesting to compare this behavior with the 
findings of Tobolsky et al.17J8 from creep and stress relaxation measure- 
ments on the anionic polymers examined in melt flow by Ruddll and Strat- 
ton.12 Tobolsky demonstrated the existence for "monodisperse" poly- 
styrene of a sharply defined maximum relaxation time ( T ~ )  and employed 
procedure X to evaluate both rm and the tensile viscosity (7J. It was 
established that the ratio 7 t / ~ ~  was almost independent of molecular 
weight. Assuming that the system is isotropic and has a Poisson ratio of 
0.5 the shear viscosity (which can be identified with go) will equal one third 

I I I 
0 100 200 3( 

+ c - ~ )  - 
Vig 2.  Narrow distribution polystyrenes. Graphical evalriation of 9 0  and T. 
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Fig. 3. Flow data for a typical anionic polystyrene" (Sl0.3) plotted i l l  accordance with 
eq. (I), with an exponent of unity. 

the tensile viscosity. Correspondence between the parameter 7 derived 
from the melt flow data and Tobolsky's maximum relaxation time (7J is 
indicated in Figure 4, where the two quantities are combined in a single 
graph against q0. Tobolsky's viscosity values are of the order 1013-1015 P, 
indicative of the glassy state, and Figure 4 indicates an approximate pro- 
portionality between viscosity and relaxation time extending over twelve 

1 1 0 5  10'0 1c 

90 - 5 

Fig. 4. Comparison of  melt A O W ~ ~ - ' ~  and creepI7 data for anionic polystyrenes. 
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decades and passing through the glass transition temperature. Earlier 
work by Andrews and Tobolsky19 on polyisobutene may also be recalled, in 
which i t  was found that the two parameters vt and rm showed a very similar 
temperature and molecular weight dependence, both quantities varying 
approximately as the molecular weight to the power of 3.3. 

Ruddll has also given data for an isothermal polystyrene with a broader 
distribution (iVw/A7,, = 2) .  This required a lower exponent (0.88) and 
gave a significantly lower value for the ratio q0 /7 .  

Polybutadiene Melts 

A similar analysis was carried out on capillary rheometer data by Gruver 
and Kraus20,21 on two different types of polybutadienes: (a) n-butyllithium- 
polymerized polybutadienes with a very narrow molecular weight distribu- 
tion and (b) one group (class 1) of cis-polybutadienes prepared by the 
Phillips process in which il?fW/il7,, is believed to lie between 2 and 4 and there 
is some degree of long chain branching. 

(1) For 
the “monodisperse” polymers, the shear rate exponent was unity; for the 
broader distribution cis-polymers the exponent was 2/3. This value may 
be influenced by branching as well as by polydispersity. (2) I n  each 
system the ratio ?,,/T was virtually independent of either molecular weight 
or temperature. (3) In  a composite plot of r]o against viscosity-average 
molecular weight points for the two different systems were colinear, i.e., in 
spite of the different distributions there was a close correlation between 
90 and B8. (4) A composite plot of log T against log ZTg gave two parallel 
lines, the broader distribution cis-polybutadienes showing significantly 
higher values of r than monodisperse polymers of the same an. This 
suggests that may be related to a higher moment of the distribution curve. 

Additional data by Boyce et a1.22 on lower molecular weight monodisperse 
polybutadienes can also be represented with an exponent of unity. 

A comparison of the two types showed the following features. 

Polymer Solutions 

Porter and J o h n s ~ n ~ ~ . ~ ~  have published viscosity-shear data on moder- 
ately concentrated solutions of polyisobutene in cetane. For a narrow 
fraction with a w / M , ,  = 1.03 the solution data can be represented with an 
exponent of unity. Comparable data for solutions with a broader distribu- 
tion ( X W / a n  = 3) gave a lower exponent (0.8). It thus appears that for 
linear polymers, either in bulk or in concentrated solution, polydispersity 
has the effect of lowering the shear rate exponent. 

Polypropylene Melts 

van der VegtZ5 has published viscosity-shear data on a series of poly- 
propylene melts differing in both molecular weight and in molecular weight 
distribution, with Q = aw/an ranging from 3.5 to 25. 
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For these polymers 1 - /q0  appcars t,o be very sinall arid the evaluation of 
Equation (1) can be written in the exponent m is correspondingly easy. 

the form 

V / P ~  = P c , / ~ o  + (1 - P - / ~ o ) / [ 1  + (TD)”’J ( 1 a) 

If 7 -/qo << 1, a graph of log (qo/q - 1) against log D will be linear, as 
suggested by Powel1,lo arid the gradient will be 772. The effect of distribu- 
tion on the gradient is shown in Figure 5 ;  polydispersity has the effect of 
lowering the exponent, as in the other polymer systems examined. 

For the different 
distributions there is little or no correlatiori between qo and T. No molecu- 
lar weights are specified by van der Vegt but to a first approximation Ayn is 
proportional to rlOo.$. A graph of T against q00.3 indicated little correlation 
betweeri T arid ao. In  order to simulate a higher molecular weight, T was 
replotted against tlie product qun.3Qo.5. This gave a very reasonable 
correlation. 

Polymer Blends 

The analysis showed the following additional features. 

Ballman and Simon’3 have published flow data on anionic polystyrenes 
With an exponent of 0.75, eq. (1) 

In  Figure 6 values of T for both “fractions” and blends are plotted against 
It is evident that AT8 gives a much better correlation 

both separately and in bimodal blends. 
gives an excellent representation of the blend data. 

aw and against ATz. 

Discussion 

Although eq. (1) involves four parameters it appears that three of these, 
and T, are related, in so far as each is a function of molecular weight qo, q 

1 .o 0 1 2 

LOG D - 
exponent. 

Fig. 3.  Pdypropyleiie niclt~.*~ P:H‘ert of molecrilnr weight distrihiitioii oti shear rate 
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LOG LOG 0 3  - 
Fig. 6. T related to molecular weight for (0 )  polystyrene “fractions” and ( X )  bimodal 

blends. 

and temperature. In  general there is a good correlation between qo and 7, 

as would be expected if r is a relaxation time related to chain mobility. 
For anionic polystyrenes, comparison with Tobolsky’s creep data” suggests 
that r may represent the maximum relaxation time of the system. 

Evidence on polystyrene, polybutadiene, and polypropylene strongly 
indicates that while 70 is related to Zw or M,, r is dependent on a higher 
moment of the distribution curve. Accordingly, if polymers differ materi- 
ally in molecular weight distribution, as in the polypropylenes of van der 
Vegt,25 the correlation between qo and r is obscured. 
may be related to MZ, but further information is required on this point. 

In  earlier work eq. (1) was widely used with a shear rate exponent of 
2/3, and from a consideration of viscosity as an even function of rate of 
shear it was argued that m could, in fact, assume any fractional value p / q  
where p is even and q odd. However, it is difficult to justify the use of an 
exponent which varies in such a manner, with a discrete series of admissable 
values. Indeed a consideration of all possible values of p and q would 
indicate that this condition does not impose any restriction on the value of 
m. 

The present results indicate that for linear polymers, either in bulk or in 
concentrated solution, the exponent is a function of molecular weight 
distribution, with an upper limit of unity for a monodisperse system. 
There is evidence that the exponent is also influenced by branching. On 
omitting data which relates to branched polymers or blends, all the results 
can be represented empirically by the simple relationship 

m = (Mn/Mw)‘’s 
I n  Figure 7 the results for the different polymer systems are shown 

A more general relationship may require a 

It is possible that 

collectively on this basis. 
different index of dispersion. 
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Fig. 7. Empirical relationship, m = (M,,/M,,,)’/6; accumulated data for various linear 
polymers: (A) “monodisperse” polystyrenes,11-14 polybutadienes,20-22 and polyiso- 
butene so1utions;za (a) polypropy1enes;z ( 8) polyisobutene solutions;*4 (+) isothermal 
polystyrenell. 

%+%xi --  
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Fig. 8. Simple shift associated with the parameter T in the equation t = 7-  + ( 7 0  - 
q , ) / [ l  4- ( T D ) ~ ] .  $0, q m  and m are constant. 
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This effect of polydispersity on the shear rate exponent is in qualitative 
agreement with the ideas expressed by Powell,1o although for a monodis- 
perse system the exponent given by Powell's relationship is not 1, but 2. 
Ultimately the exponent must be related to a distribution of relaxation 
times. If a value of unity corresponds to the relaxation spectrum of a 
monodisperse polymer it is conceivable that a single relaxation time would 
give a value of 2.  

The analysis indicates that polydispersity affects the flow curve in two 
respects, one associated with the exponent m and the other with the param- 
eter T .  A wider distribution gives a lower value of m and a broadening of 
the flow curve, as indicated in Figure 1. Also for a given value of ZTm 
(and 7 0 )  there will be a higher value of T ,  giving a horizontal shift of the 
7-log D curve, as illustrated in Figure 8, resulting in the onset of non- 
Newtonian flow at  lower rates of shear. 

The author wishes to express his gratitude to Mr. F. L). Hartley for many stimulating 
discussions. 
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